在商業分析師的工作裡,人比數字更重要

 In 德國產業介紹

 

近年來好德觀察有非常多的學生對於來德國念數據分析碩士課程相當有興趣,然而很多同學並不具有相關的背景。在與學生的討論中發現,學生對於數據分析有某種模糊的憧憬,並不了解該產業的全貌。我們認為這並不是個好現象,因為數據分析的領域可深可淺,在一知半解的情況下,貿然投入數據相關的碩士課程可能會經歷一定程度的困難,最壞的程度甚至是休學。所以這次藉由顧問Steve分享在數據分析領域的工作經驗與見解,讓對該領域有興趣的學生能有更多的思考,確定自已的興趣。

 

——————本文開始——————

從踏入職場以來,我的工作就跟大量的數據一直沾上邊,從台灣銀行業的數據,亞馬遜工廠的數據,到Flixbus的行銷數據,從營運,行銷到銷售的數據分析,小到「一天我管的團隊包裝了幾個包裹」,大到「一年高達上億的行銷預算分析」都有碰過,我一直在思索,到底需要怎麼樣的技能才能把這個工作做好?我需要學更多程式語言嗎?我需要學習一些量化模型嗎?

 

商業分析的本質是業務本身,少了分析管理者一樣要做決策

今年我負責Flixbus行銷預算中的一個統計模型,目的是在衡量那些線上無法追蹤的行銷通路,例如電視廣告,室外看板,廣播等等對於我們銷售的影響,這個模型被稱為“Marketing Mix Modeling (跨行銷通路的分析模型)”,這個模型有相當多的變數,也有相當多的假設,如果調整了一項假設,算出來的結果就會改變。

 

牽扯到預算,自然變成了兵家之地,變數一改,模型條件一變,表現不好的行銷通路就會來質疑挑戰,每次更動都少不了一番解釋,本來眾所期待的一個項目變成各種質疑,政治跟哲學角力的場所。

 

在修正了數個版本之後,我們還是無法取得共識,最終在主管會議上,我們把各種版本的結果放到會議上,聽完闡述以後,老闆說:“我們選了這個版本,因為他是我們能力所及可以做出最好的解釋,即使還有討論的空間,我們也必須往前走,因為我們需要做決策 “。

 

那一刻我深刻個感受到,數據分析師在商業團隊扮演的是輔助決策,沒有數據這個決策依然要做,所以要讓數據分析在決策過程中被採納,除了數據分析本身的專業以外,更多時候需要的是妥協,溝通,經驗,共識,商業分析師的工作除了跟數據科學家把數據模型算好,分析架構做好,更重要的是能夠讓決策者理解並接受,最後在決策時願意納入考量。

 

我用R跑了隨機森林的模型,但我的使用者連Excel都不熟

今年正好協助公司招募行銷分析師,面試了數十個不同國家的求職者,我們發現了一個蠻普遍的問題:大家都很在意自己的硬實力有沒有表現出來,但卻沒辦法解釋,為什麼要做這些分析,為什麼用這個工具有意義。

 

對商業分析,行銷分析職缺很有興趣的校友或是在校學生常會問我:PowerBI, Python, SQL, R, Tableau我是不是要先來學,先去考證照?我要不要會寫時間序列分析?我要不要會Bayesian Model? 確實每個來求職的人幾乎都有這樣的背景,但真的做得好的,往往不是所謂硬實力“Tech Skill“最好的人,而是能理解商業背景,然後把自己分析脈絡講清楚的人。

 

數據分析總是艱澀,當你千辛萬苦用R建了一個模型,用SQL設了很多條件,用PowerBI建了一堆報表,但你卻無法跟你的使用者說,這個數字哪裡來的?最終你的對口只會叫你用Excel把原始數字寄給他,然後憑著自己的經驗趕快在下班前加加減減送出去給老闆。

 

「你可以試著跟10歲的小朋友說明你的碩士論文嗎?」我們很喜歡問這個問題,平時也會練習用這個視角,來解釋困難的分析概念,因為你公司的同事可能真的連Excel都不會用,讓完全不會用數據的人理解,為何我們所做出來的分析,可以幫助他。

 

做決策的是人,不是數字

「讓數據做決定」是很多人喜歡在公司裡面談的概念,通常僅限於他們認可的數字,一旦數字稍微偏離自己的想像,或是跟自己的利益有所衝突,這個數字就會被各種懷疑,挑戰,更多時候,分析邏輯與方法就在信與不信的一念之間。

 

真正可以幫助決策的商業分析師,通常對商業的理解非常全面,站在決策者(也可以說你數據的用戶)的角度去思考,到底決策時缺了什麼,另外對數字的敏銳度很強,不見得要自己做分析,但卻能清楚地解釋分析過程,掌握數字正確度跟可信度,溝通上也相對明快清楚,用簡單明暸的方式呈現,在我的經驗中,這些特質是我在團隊中還有面試裡,優秀的商業分析師所具備的共通優點。

 

更多德國職場的相關文章,歡迎造訪【一分鐘德國】專欄。

Recommended Posts